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Abstract
From the comparison of the correlation tensor in the theory of quantum networks
and the Alexander relation matrix in the theory of knot crystals we find that
there is a one-to-one correspondence between four Bell bases and four oriented
links of the linkage 41 in knot theory. Meanwhile, we show that the inversion
relations under the action of Pauli matrices are the same for the four Bell bases
and their corresponding links. Similarly we show that there is also a one-to-one
correspondence between 2m GHZ states ofm nodes and 2m oriented links ofm
components.

PACS numbers: 03.65.Bz, 02.40.+m, 03.67.−a

1. Introduction

Since the pioneering work of Einstein et al [1], the concept of quantum entanglement has
become more and more important in quantum mechanics [2–11]; it plays an essential role
in quantum teleportation, quantum computation and the modern understanding of quantum
phenomena. In this paper we shall study this problem from the point of view of knot
crystals [12–14]. In the theory of quantum networks [15], the criterion of entanglement is
the existence of nonzero elements of the correlation tensor [15]. Hence the correlation tensor
plays a central role for studying the entangled state in quantum mechanics. On the other hand
we find that the Alexander relation matrix [12] plays a central role in studying the entanglement
of an oriented link with m components. From the comparison of the correlation tensor in the
theory of quantum networks and the Alexander relation matrix in the theory of knot crystals
we find that there is a one-to-one correspondence between four Bell bases and four oriented
links of the linkage 41 in knot theory. Meanwhile, we show that the inversion relations under
the action of Pauli matrices [16] are the same for the four Bell bases and their corresponding
links. From the above arguments we have sufficient reasons to say that such correspondence is
convincing and not accidental. Similarly we find that there is also a one-to-one correspondence
between 2m GHZ states ofm nodes and 2m oriented links ofm components, and point out that
the inversion relations under the action of Pauli matrices are the same for the 2m GHZ states of
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network nodes = quantum objects

network edges = interaction channels

boundary to environment

Figure 1. Quantum network.

m nodes and their corresponding 2m oriented links. In section 2 we shall briefly introduce the
correlation tensor and the covariant correlation tensor for a quantum network of two nodes.
In section 3 we shall briefly introduce fundamental notions of knot theory and then derive the
Alexander relation matrix for four oriented links of two components with four crossings and
show that these links correspond to four Bell bases for the quantum network of two nodes;
furthermore, we show that the inversion relations under the action of Pauli matrices are the
same for the four Bell bases and their corresponding links. In section 4 we discuss GHZ states
in general. In section 5 we discuss a quantum network of three nodes and generalize our results
to a quantum network of m (m � 4) nodes.

2. Correlation tensor and covariance correlation tensor

A quantum network is a system consisting of N subsystems (‘nodes’) interacting with each
other in n-dimensional Hilbert space. The subsystems of the network are special quantum
objects denoted as ‘network nodes’. Schematically this is represented by the diagram shown
in figure 1; the interaction channels are represented by network edges.

The generating operators of SU(n) are denoted by λ̂j . Let ν be the ordinal numbers of
the nodes and s be the dimensionality of the generating operator λ̂j , where s = n2 − 1. In the
case of a single node, i.e. ν = 1 only, in terms of the generating operators, the density operator
ρ̂ is [13]

ρ̂ = 1

n
1̂ +

1

2

s∑
j=1

λj λ̂j (1)

where λj is the expectation value of λ̂j , i.e.

λj = 〈λ̂j 〉 = Tr{ρ̂λ̂j }. (2)

In the case n = 2, s = n2 − 1 = 3, λ̂j is just the Pauli operator σ̂j , whereas

λj = 〈λ̂j 〉 = 〈σ̂j 〉 = Pj (3)

where Pj is a component of the polarization vector, j = x, y, z. Substituting (3) into (1) we
obtain the density matrix:

ρ = 1
2

(
1 + Pz Px − iPy
Px + iPy 1− Pz

)
. (4)



Knotted pictures of entangled states 3735

In the case of two nodes, ν = 1, 2, the density operator ρ̂ is [13]

ρ̂ = 1

n1n2
1̂ +

1

2n2

s1∑
j=1

λj (1)[λ̂j (1)⊗ 1̂(2)] +
1

2n1

s2∑
k=1

λk(2)[1̂(1)⊗ λ̂k(2)]

+ 1
4

s1,s2∑
j.k=1

Kjk(1, 2)[λ̂j (1)⊗ λ̂k(2)] (5)

where s1 = n2
1 − 1 and s2 = n2

2 − 1. The correlation tensor Kjk(1, 2) is defined as

Kjk(1, 2) = 〈λ̂j (1)λ̂k(2)〉 = Tr{ρ̂[λ̂j (1)⊗ λ̂k(2)]}. (6)

The covariance correlation tensorMjk(1, 2) is introduced as

Mjk(1, 2) = Kjk(1, 2)− λj (1)λk(2). (7)

Equations (6) and (7) are the definitions of the correlation tensor and covariant correlation
tensor respectively. In terms of the covariant correlation tensor (5) can be written as

ρ̂ = ρ̂(1)⊗ ρ̂(2) + 1
4

s1,s2∑
j.k=1

Mjk(1, 2)[λ̂j (1)⊗ λ̂k(2)]. (8)

WhenMjk(1, 2) = 0 (for all possible j and k), (8) becomes the product state ρ̂ = ρ̂(1)⊗ ρ̂(2),
that is, there is no entanglement, i.e. no inter-node coherence. Hence the tensor Mjk(1, 2)
allows the term entanglement to be defined in a precise way. The criterion of an entangled
state for a composite system consisting of two nodes is that Mjk(1, 2) = 0 is not true for
all possible j and k, i.e. there exist nonzero elements of the covariance correlation tensor
Mjk(1, 2).

Now let us discuss the system consisting of two spin- 1
2 particles. For this system, there

are four well known Bell bases:

|�±〉 = 1√
2
(|↑↓〉 ± |↓↑〉)

|�±〉 = 1√
2
(|↑↑〉 ± |↓↓〉).

(9)

Calculating the density matrix of the Bell bases and using (8) we obtain the corresponding
covariance correlation tensors as follows:

M(�+) =
( 1 0 0

0 1 0
0 0 −1

)
M(�−) =

(−1 0 0
0 −1 0
0 0 −1

)

M(�+) =
( 1 0 0

0 −1 0
0 0 1

)
M(�−) =

(−1 0 0
0 1 0
0 0 1

)
.

(10)

Since there are nonzero elements in (10), Bell bases are entangled states.
Now let us discuss the inversion relations of Bell bases under the action of the Pauli

operator [14]:

σ1 =
(

0 1
1 0

)
= σx σ2 =

(
0 1
−1 0

)
= iσy σ3 =

(
1 0
0 −1

)
= σz. (11)

There are inversions of phase and spin, where σ1 only causes inversion of spin and σ3 only
causes inversion of phase, but σ2 can simultaneously cause inversion of phase and spin. The
inversion relationship under the action of the Pauli operator is shown in figure 2.
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Figure 2. Inversion relationship of Bell bases.

a a
b b

c c

τ τ

c = ab = τa + [1 - τ]b c = ab = τ– 1a + [1 - τ– 1]b

Figure 3. Two modes of crossing.

3. Alexander relation matrix and inversion relations

Firstly we briefly introduce fundamental notions of knot theory. A knot is a closed piece of
string without loose ends; the length, thickness and precise shape are of no interest. A link
is a collection of two or more knots, or components, which may or may not be physically
intertwined. Knots and links can be projected onto a plane and thus represented by planar
diagram. A knot, or a link, is oriented if its loops are directed; otherwise, the knot is unoriented.
There are two kinds of oriented crossing. For every crossing, one oriented line segment
situates over the crossing and the other oriented line segment situates under the crossing: when
the direction from the overcrossing oriented line segment to the undercrossing oriented line
segment is anticlockwise, the crossing is called a positive crossing; otherwise, i.e. clockwise,
the crossing is called a negative crossing. For example, the left crossing shown in figure 3 is a
positive crossing, whereas the right crossing shown in the same figure is a negative crossing.

Now we introduce Alexander relation matrices (ARMs) and derive them for a two-
component oriented link with four crossings, where the two-component unoriented link with
four crossings in knot theory is denoted by 41, where 4 denotes the number of crossings and
the subscript denotes the order of such links [12]. For example, there are three types for a
two-component unoriented link with six crossings: they are 61, 62, 63; thus the order of a link
tells us which link of the class with known crossings it is. For a two-component unoriented
link with four crossings, there is only one type; this is 41. Then we shall show that their
nonzero submatrices have a one-to-one correspondence with the covariance correlation tensor
of a system consisting of two nodes. Hence we can give the knotted picture of four Bell bases.
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s– s–s+s+

t+t+ t– t–

42[s_,t+] 42[s+,t–] 42[s+,t+] 42[s_,t–]

Figure 4. Four kinds of oriented link for a two-component link.

s–

t– O4 O2

O3O1

x2
y2

x1

y1

Figure 5. Diagram showing 42(s
−, t−).

There are two modes of crossing, the right cross b� and the left cross �b; they will serve
to encode the two oriented types of diagrammatic crossing as shown in figure 3.

As illustrated in figure 3, the arc c emanating from an undercrossing is regarded as the
result of the overcrossing arc b, acting (b� or �b) on the incoming undercrossing arc a. Thus
c = a b� corresponds to a right cross whereas c = a�b corresponds to a left cross. a b� and
a�b are defined by the following equations:

ab� = τa + (1− τ)b a�b = τ−1a + (1− τ−1)b (12)

where a, b ∈ M ,M is any module over the ring Z(τ, τ−1) and τ is the ring parameter.
For the convenience of discussion of a system consisting of more than two nodes,

we use the notations 42(s
±, t±) to represent the four oriented links, where the number 4

denotes that the number of oriented links is equal to four, the subscript 2 denotes that the
number of components is equal to two and t± and s± denote the ring parameters of the four
oriented components respectively: the positive sign denotes the anticlockwise direction of the
corresponding component, whereas the negative sign denotes the clockwise direction of the
corresponding component. Thus there are four kinds of oriented link for a two-component
link: they are 42(s

+, t+), 42(s
−, t−), 42(s

−, t+), 42(s
+, t−), which are shown in figure 4.

Now we shall use (12) to derive the ARMs of the four oriented links 42(s
±, t±). From

the requirement that the Alexander polynomial of 41 is PA(s, t) = s + t , irrespective of the
directions of two components [12], i.e. the Alexander polynomial of the four oriented links
42(s

±, t±) must have the same value as PA(s, t) = s + t , we find that

s+ = 1

s−
= s t− = 1

t+
= t. (13)

3.1. ARM of 42(s
−, t−)

42(s
−, t−) is shown in figure 5.
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Using (12) for the four crossings we obtain

For crossing O1 : x2 = x1y2� = t−x1 + (1− t−)y2

For crossing O2 : x1 = x2y1� = t−x2 + (1− t−)y1

For crossing O3 : y2 = y1x1� = s−y1 + (1− s−)x1

For crossing O4 : y1 = y2x2� = s−y2 + (1− s−)x2.

(14)

Using (13) to arrange (14) we obtain

−tx1 + x2 + (t − 1)y2 = 0 x1 − tx2 + (t − 1)y1 = 0
(s−1 − 1)x1 − s−1y1 + y2 = 0 (s−1 − 1)x2 + y1 − s−1y2 = 0.

(15)

The coefficient matrix of (15) after eliminating negative powers is

A−−(s, t) =
(
A−−11 A−−12

A−−21 A−−22

)
(16)

where the matrices A−−ij are all 2× 2 matrices:

A−−11 =
(−t 1

1 −t
)

A−−12 =
(

0 t − 1
t − 1 0

)

A−−21 =
(

1− s 0
0 1− s

)
A−−22 =

(
s −1
−1 s

)
.

(17)

The 4× 4 matrix (16) is the ARM of 42(s
−, t−); from (16) we can easily obtain the nonzero

3× 3 submatrix:

A−− =
(−1 0 0

0 1 0
0 0 1

)
. (18)

3.2. ARM of 42(s
+, t−)

Using the above method we readily obtain the ARM of 42(s
+, t−):

A+−(s, t) =
(
A+−

11 A+−
12

A+−
21 A+−

22

)
(19)

where

A+−
ij = σ2A

−−
ij . (20)

The nonzero submatrix of (19) is

A+− =
( 1 0 0

0 1 0
0 0 −1

)
. (21)

3.3. ARM of 42(s
+, t+)

Similarly we obtain the ARM of 42(s
+, t+):

A++(s, t) =
(
A++

11 A++
12

A++
21 A++

22

)
(22)

where

A++
ij = σ3A

−−
ij . (23)

The nonzero submatrix of (22) is

A++ =
( 1 0 0

0 −1 0
0 0 1

)
. (24)
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Figure 6. Inversion relationships of four oriented links.

s– s– s+s+

t–t+t+
t–

42[s+,t+] 42[s–,t–] 42[s–,t+] 42[s+,t–]

Figure 7. Correspondence between Bell bases and oriented links.

3.4. ARM of 42(s
−, t+)

Finally we obtain the ARM of 42(s
−, t+):

A−+(s, t) =
(
A−+

11 A−+
12

A−+
21 A−+

22

)
(25)

where

A−+
ij = σ1A

−−
ij . (26)

The nonzero submatrix of (25) is

A−+ =
(−1 0 0

0 −1 0
0 0 −1

)
. (27)

3.5. Correspondence between four Bell bases and four oriented links of 41in knot theory

From (20), (23) and (26) we know that there are inversion relationships between the ARMs of
four oriented links under the action of the Pauli operator; these relations are shown in figure 6.

Comparing figure 6 with 2 and meanwhile comparing (18), (21), (24) and (27) with (10),
obviously we have one-to-one correspondence between four Bell bases and four oriented links
42(s

+, t+), 42(s
−, t−), 42(s

−, t+), 42(s
+, t−). This correspondence is shown in figure 7.
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4. GHZ states

Now we shall generalize our previous results for a quantum system of two nodes to a quantum
system of m (m � 2) nodes. In the case of a system of two nodes, we know that there are
four product states, which are |↓↓〉 = |1〉, |↓↑〉 = |2〉, |↑↓〉 = |3〉, |↑↑〉 = |4〉. From these
four product states we construct four Bell bases, which are |�±〉 = (1/√2)(|4〉 ± |1〉) and
|�±〉 = (1/√2)(|3〉 ± |2〉). Actually, Bell bases are GHZ states for m = 2. In the case of
three nodes, there are eight product states, which are |↓↓↓〉 = |1〉, |↓↓↑〉 = |2〉, |↓↑↓〉 = |3〉,
|↓↑↑〉 = |4〉, |↑↓↓〉 = |5〉, |↑↓↑〉 = |6〉, |↑↑↓〉 = |7〉, |↑↑↑〉 = |8〉. From these eight product
states we can construct eight GHZ states for m = 3:

|�±1 〉 =
1√
2
(|8〉 ± |1〉) |�±2 〉 =

1√
2
(|7〉 ± |2〉)

|�±3 〉 =
1√
2
(|6〉 ± |3〉) |�±4 〉 =

1√
2
(|5〉 ± |4〉).

(28)

The general GHZ states for m � 2 states are defined as

|�±j 〉 =
1√
2
(|2m − j + 1〉 ± |j〉) j = 1, 2, . . . , 2m−1. (29)

The eight GHZ states for m = 3 have a similar inversion relationship as the case for m = 2;
they are

σ3�
+
j = �−j σ3�

−
j = �+

j j = 1, 2, 3, 4

σ1�
±
1 = �±2 σ1�

±
2 = �±1 σ2�

±
1 = �∓2

σ2�
∓
1 = �±2 σ2�

±
3 = �∓4 σ2�

∓
4 = �±3 .

(30)

Hence, as in the case form = 2, σ3 only causes inversion of phase and σ1 only causes inversion
of spin, but σ2 can simultaneously cause inversion of phase and spin. The above statement can
be generalized to GHZ states for any value of m � 4.

5. One-to-one correspondence between GHZ states and oriented links

In the case of a quantum network of three nodes, there are eight GHZ states: we shall
show that they correspond to eight oriented links 83(s

±, t±, u±), where the number 8
denotes that the number of oriented links is equal to eight, the subscript 3 denotes that
the number of components is equal to three and s, t and u denote the ring parameters of
the three components respectively; the positive sign denotes the anticlockwise direction of
the corresponding component, whereas the negative sign denotes the clockwise direction of
the corresponding component. Since any two components of the link have four crossings,
there are 12 crossings in this case. The eight kinds of oriented link for a three-component
link with 12 crossings are 83(s

+, t−, u−), 83(s
−, t+, u+), 83(s

+, t+, u+), 83(s
−, t−, u−),

83(s
+, t+, u−), 83(s

−, t−, u+), 83(s
+, t−, u+), 83(s

−, t+, u−). For example, the oriented link
83(s

+, t−, u−) is one of the eight oriented links with three components; the direction of the
first component knot is anticlockwise, whereas the directions of the second and third component
knots are clockwise. Using the same method as in section 3, of course the calculation is very
tedious; we found that there is a one-to-one correspondence between eight GHZ states and
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eight oriented 83 links:

�+
1 ←→ 83(s

+, t+, u+) �−1 ←→ 83(s
−, t−, u−)

�+
2 ←→ 83(s

+, t+, u−) �−2 ←→ 83(s
−, t−, u+)

�+
3 ←→ 83(s

+, t−, u+) �−3 ←→ 83(s
−, t+, u−)

�+
4 ←→ 83(s

+, t−, u−) �−4 ←→ 83(s
−, t+, u+).

(31)

For m � 4, since any two components of the link have four crossings, there are 4Cm2 =
4m(m − 1)/2! = 2m(m − 1) crossings. Though the calculation is exceedingly tedious, the
method is essentially the same; we can still find the one-to-one correspondence between 2m

GHZ states and the 2m oriented links. Details of this work will be shown in another paper.
Therefore, from the comparison of the correlation tensor of the 2m GHZ states for an

m-node quantum network on the one hand, and the ARM of the 2m oriented m-component
links with 2m(m − 1) crossings on the other hand, we have found that there is a one-to-
one correspondence between the 2m GHZ states and the 2m oriented links; thus we give the
entangled state a knotted picture, which is very useful in handling and analysing entangled
states. We have found that the knotted picture is very useful in discussion of the degree of
entanglement, the problem of quantum teleportation and other related phenomema; all these
problems we shall systematically discuss in other papers.
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